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A two-zone model is proposed for the longitudinal dispersion of contaminants in 
two-dimensional turbulent flow in open channels - a fast zone in the upper region of 
the flow, and a slow zone nearer to the bottom. The usual one-dimensional dispersion 
approach (Elder 1959) is used in each zone, but with different flow speeds U, and 
U, and dispersion coefficients D, and D, in the fast and slow zones respectively. 
However, turbulent vertical mixing is allowed at the interface between the two zones, 
with a small vertical diffusivity E. This leads to a pair of coupled, linear, one- 
dimensional dispersion equations, which are solved by Fourier transformation. The 
Fourier-inversion integrals are tlnalysed using two different methods. 

In  the first method asymptotically valid expressions are found using the saddle- 
point method. The resulting cross-sectional average concentration consists of a 
leading Gaussian distribution followed by a trailing Gaussian distribution. The 
trailing Gaussian cloud disperses (longitudinally) faster than the leading one, and this 
gives the long tail observed in most dispersion experiments. Significantly the peak 
value of the average concentration is found to decay exponentially with time at a 
rate which is close to the rate observed by Sullivan (1971) in the early stage of the 
dispersion process. The solution is useful for fairly small times, and both the 
calculated value of D, and the predicted bulk concentration distribution are in 
meaningful agreement with the experimental and simulation data of Sullivan (1971). 

In the second method an exact solution is found in the form of a convolution 
integral for the case D, = D, = Do. Explicit expressions which are valid for small 
times and for large times from the release of contaminant are found. For small times 
this exact solution confirms the basic results obtained by the saddle-point method. 
For large times the exact solution gives a contaminant concentration which 
approaches a Gaussian distribution travelling with the bulk speed as predicted by 
the Taylor model. The overall longitudinal dispersion coefficient at large times, D( a), 
consists of the diffusivity Do plus a contribution Dt(oo) which depends entirely on 
the vertical mixing. D ( a )  is in good agreement with Chatwin’s (1971) interpretation 
of Fischer’s (1966) experimental data. 

1. Introduction 
The study of longitudinal dispersion in shear flows was pioneered by Taylor (1953, 

1954), who showed that the dispersion of dissolved or suspended matter in laminar 
or turbulent pipe flow can be modelled by a one-dimensional advectivdiffusion 
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equation. His method has been extended to two- and three-dimensional turbulent 
flows in open channels and streams by Elder (1959)) Aris (1956), Fischer (1966) and 
others. Much research work continues on such questions as better prediction of the 
longitudinal dispersion coefficients, the effect of the viscous sublayer, vertical and 
lateral dispersion coefficients, dispersion in estuaries, and other problems. 

One problem is the fact that the one-dimensional model always predicts a normal 
distribution of matter down the channel for all time, whereas observed distributions 
of dispersing clouds are always skewed, especially at small times. Sullivan (1971) used 
a three-stage model to explain this skewness. In  the first stage, referring to the period 
of time shortly after the release of the contaminant, the upper layer y > +h is 
well mixed, while there is no significant flux of contaminant from this layer to the 
lower layer y < +h, which moves more slowly (here h is the depth of the flow and y 
is the vertical distance from the bottom of the channel). In  the second stage, referring 
to later times, the upper layer consists of the region y > y+, where y+ is the thickness 
of the viscosity-dominated layer. In the third stage, referring to large times, the 
entire flow depth is one layer. Sullivan used statistical simulation to show the validity 
of his description, especially in the first stage. 

Some other researchers have used two-layer models to study various aspects of the 
dispersion process. Hays (1906) developed a dead-zone model to describe the effects 
of regions of stagnant fluid (dead zones) in streams. Chatwin (1973) used two layers 
(the mainstream and the viscosity-dominated layer) having a linear velocity profile 
and calculated some effects of the viscous layer on turbulent dispersion. Thacker 
(1976) showed that for a flow with two equal layers, each of which is well-mixed and 
has negligible horizontal diffusivity (D, = D, = 0), the bulk concentration satisfies 
a telegraph equation. He thus obtained an exact analytic solution for thisnon-diffusive 
case, and also touched briefly upon the diffusive case D, = D, + 0. Smith (1981, 
1982) has also studied a delay4iffusion description that is equivalent to the two- 
layer model, and also used the telegraph equation to obtain exact solutions for the 
non-diffusive case D, = D, = 0. He also showed how the layers should be chosen so 
as to achieve good results. 

This paper proposes a partial-differential-equation approach to explain the skewed 
profile by means of a two-zone model. The flow is divided into a fast zone and a slow 
zone which interact while each zone is governed by a linear one-dimensional 
dispersion equation. This idea was conceived because of the experimental observation 
that most turbulent shear flows consist of a centre or surface section of approximately 
uniform velocity, and rapid velocity gradients near the boundaries. Thus our model 
consists of a slow-moving zone near the bottom and sides of the channel and a 
fast-moving zone in the middle of the channel. We assume that each zone is well mixed 
and thus has a uniform concentration of contaminant, while turbulent diffusion takes 
place at the interface between the two zones, leading to coupling of the governing 
equations. 

It should be noted that Elder (1959) suggested that the skewed distribution could 
be discussed in two parts : a forward Gaussian distribution representing contaminant 
over the major part of the cross-section, and a second Gaussian distribution 
representing dyed fluid in the viscous layer. This paper thus provides a detailed 
mathematical model of Elder’s suggestion and Sullivan’s (1971) description, where 
the slow layer is here interpreted as the region of rapid turbulent velocity gradient 
near the boundaries (and not the viscosity-dominated layer). 

In  our asymptotic solution it is important that D, and D, are non-zero, while the 
vertical diffusion coefficient 8 is small. This makes i t  possible for us to apply 
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perturbation expansions in powers of 6. It is also important that D, > D,, as this 
makes it possible for the contaminant to disperse faster in the slow zone than in the 
fast zone (at small times), thus giving the characteristic long tail. However, the exact 
solution analysed in @%ll for the case D, = D, gives significant results both for 
small times and for large times. 

2. Derivation of coupled slow- and fast-zone equations 
Although the basic idea of the slow-zone model can be applied to three-dimensional 

open-channel flow and to pipe flow, the derivation and the solution of the equations 
in this paper will be concerned with the case of turbulent two-dimensional open-channel 
flow. Thus we assume that the channel is sufficiently wide such that the dispersion 
of matter in the flow will be governed by the two-dimensional diffusion equation 

where c is the concentration of contaminant, x and y are respectively the downstream 
longitudinal and vertical Cartesian coordinates in the channel, DL and Dv are 
respectively the turbulent longitudinal and vertical dispersion coefficients, u is the 
fluid velocity (independent of z) and t is the time. 

Consider the fast and slow zones shown in figure 1. Equation (2.1) can be averaged 
over the cross-sectional area of each zone (in the manner of Elder 1959), leading to 
two different one-dimensional dispersion equations, one in each zone. However, 
through the vertical-diffusion term in (2.1), we shall take into account the vertical 
turbulent diffusion at the interface between the two zones. This will be done in the 
same way as Hays (1966) did for his dead-zone model. 

Let ih, and h, be the thicknesses of the fast and slow zones respectively. We assume 
that each zone is well mixed, with cross-sectional averages c,, c, and ul, u, for the 
contaminant concentrations and velocities in the fast and slow zones respectively. 
The mass flux of contaminant by turbulent diffusion across the interface from the 
fast to the slow zone is thus 

-MT = u(c,-c,) ,  (2.2) 

where a is a constant. This mass moves into the slow zone per unit time per unit area 
of the interface and contributes to the time rate of change of the concentration in 
the slow zone. A similar equation can be written for the transfer of mass from the 
slow to the fast zone: 

MT = a@,-c , ) .  (2.3) 

Thus, averaging (2.1) over the cross-section in each zone, the resulting coupled 
slow- and fast-zone advective-diffusion equations are 

U a, c1 = qL a; c1 -ul a, c1 +- (c, - c,), ( 2 . 4 ~ )  
hl 
U a, c2 = D , ~  a: c2 -u2 a, c2 +- (cl - cz), (2.4b) 
h2 

where D1L and DZL are the average longitudinal dispersion coefficients in the fast and 
slow zones respectively. If h is the depth of the flow in the channel then 

(2.5) 
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FIGURE 1 .  Channel, showing slow zone and fast zone. 

where ql and 7, are the fractional depths of the fast and slow zones respectively. We 
also define 

If u* is the friction velocity of the flow, it is convenient to non-dimensionalize the 
parameters in the coupled dispersion equations (2.4) by means of the following 
nondimensional variables and constants : 

DZL DV .=-.J a D2=-, E -- 
hu, ' - h u , '  u* 

The non-dimensionalized forms of (2 .4)  are thus 

a T c l  = D l a s c l -  u l a , c l + ~ p 1 ( C 2 - C 1 ) ,  (2.7a) 

aT c ,  = D ,  3% c, - U, a, C ,  + @,(cl - c,) .  (2.7b) 

It may be noted that when p, = co (i.e. when the slow zone has zero thickness) then 
c1 = c2 in (2.7b). The coupled equations (2.7) then reduce to the usual single 
one-dimensional dispersion equation. 

Initial conditions of rapid injection 

An important initial-boundary-value dispersion problem is that in which a mass of 
contaminant is rapidly injected or dumped a t  an initial location and subsequently 
disperses downstream. If the contaminant is assumed to be well mixed in the initial 
vertical layer, then the initial conditions for (2 .7)  are 

CI(X, 0) = C2(X, 0) = co W), (2.8) 

where co is the initial concentration of contaminant and 6 is the Dirac delta function. 

3. The constants of the model 
The constants that appear in (2 .7)  are the longitudinal and vertical dispersion 

coefficients D,, D,  and E ,  the average velocities U,, U,, and p l ,  p,, which are the 
inverses of the fractional depths. 
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3.1. Velocity projile 

We shall assume that the flow velocity is given by von KBrmBn's logarithmic profile 

(3.1) u( Y) = a+* ( 1  +In Y), 

where Y = y / h ,  ii is the average velocity over the entire cross-section and K is von 
KhrmBn's constant (about 0.4). For two-dimensional shear flow the validity of the 
logarithmic profile (away from the boundary) has been well established experimentally 
(e.g. Fischer 1966). 

U 

K 

The depth ratio is 
7 = 72/71* (3.2) 

Thus the non-dimensionalized average velocity in the slow zone will be 

and using (3.1) in (3.3) and integrating gives 

1 
U ,  = U+- lnq2, 

K 
(3.4a) 

where U = ii/u* is the non-dimensional overall average velocity. Similarly, in the fast 
zone, 

u, = - ' F d Y ,  
1-72 q z  

or U, = U - -  7 lnq2. 
K 

It may be noted that 
u = (1 -72) u1+72 u2. 

3.2. Estimates of the longitudinul and vertical dispersion coeflcients 

(3.4b) 

(3.4c) 

For two-dimensional open-channel flow the theoretical formula obtained by Elder 
(1959) (also see Chatwin 1971, equation (5 .2))  for the longitudinal dispersion 

(3.5a) 
coefficient is l " 1  

D, = I,', q d Y [  I," U7Y)dYJ 

where u'(Y) = u(y) --C, D, = hU* Ky( 1 - y). 

In dimensionless form, (3.5a) can be written as 

(3.5b) 

where E ,  = Y( 1 - Y ) ,  U'( Y) = u( Y)/u, - U. 

to (3.5b), the resulting equation for D2 is 
If the method of Elder (1959) is applied to the slow zone, then, in a similar form 

D ~ = K  --8 7a -l E;' d Y  [ Joy U;(Y) dY]P, (3.6a) 

where U;( Y) = u( Y)/u* - U,. 
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Similarly, in the fast zone the longitudinal dispersion coefficient obtained is 

(3.63) 

where u;( Y) = u( Y)/u* - u,. 
After the integrals in the brackets have been evaluated, (3.6a,b) can be written 

as 

( 3 . 7 ~ )  

(3.7b) 

It will be shown in 5 11 that the optimal choice for the fractional depths of the zones 
gives 

Using these values of the fractional depths, the integrals in (3.7a,b) were evaluated 
numerically, and the resulting longitudinal diffusivities in the fast and slow zones 
found to be 

7 2 -  - e- l= 0.3679; = 1-ee-l = 0.6321. 

0.1033 
D, = - 0.0164 

D , = K J ;  K3 

If K = 0.41 it is found that 
D,  = 0.24, D, = 1.50. 

( 3 . 8 ~ )  

(3.8b) 

For the vertical dispersion coefficient, the cross-sectional average value obtained 
by Elder (1959) is 

This approximate value was referred to by Fischer (1973) and has been confirmed 
by the experiments of Jobson & Sayre (1970). 

In order to estimate the vertical diffusion rate a that appears in (2.2) and (2.4), 
consider the concentration profile shown in figure 2. The dotted line in figure 2 runs 
from the midpoint of the fast zone to the midpoint of the slow zone, and indicates 
that the average concentration gradient can be estimated to be 

D, = iKhu*, ev = i~ X 0.067. (3.9) 

(3.10) 

Thus, if the vertical diffusion rate is D, as in (2.1), then the mass flux will be given 
(in analogy with Fourier's law of heat conduction), by 

(3.11) 
ac 

aY 
MT=-Dv-.  

Combinning (2.2), (3.10) and (3.11), it  is found that 

20, -MT = a(cl-c2) = -(c1-c2). h 

Thus a x 2D,/h, 

and, using (2.10) and (3.9), we find that 

E x 26, = +K x 0.137. 

(3.12) 

(3.13) 

(3.14) 
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FIQURE 2. Concentration profile showing fast-zone (4) and slow-zone (co) contaminant 
concentrations. The dotted line indicates the average concentration gradient. 

This value of B is in agreement with the value of 0.12 found by Sullivan (1971) for 
the average non-dimensional lateral diffusivity as given in his table 2. 

Thus 6 is a fairly small parameter, and this fact will prove useful in our asymptotic 
analysis of the coupled dispersion equations (2.7). 

4. Solution by Fourier transforms 

transformation with respect to X, using the Fourier transforms 
We shall solve the coupled fast- and slow-zone equations (2.7) by Fourier 

Q) 

F,(A, T) = eiAX c,(X, T) dX, n = 1,2, (4.1 a) 

C,(X, T) = - j e-iAX F,(h, T)dA, n = 1,2. (4.1 b) 

The resulting ordinary differential equations for the Fourier transforms Fl and F, are 

-m and their inverses 
00 

27c -00 

- ( - h 2 D 1 + i h U l - ~ ~ , ) ~ + + ~ , F , ,  d 4  -- 
d T  

(4.2~) 

d F  
d T  

(4.2 b)  e- - (-A2Dz+iAUI-@?,) F2++/3,&, 

and the initial conditions obtained from (2.12) are 

&(A,  0) = F2(A, 0) = c ~ .  (4.2~) 

Assuming solutions of exponential form 

F, (A ,  T )  = P(A) er(A)T, F,(A,  T) = Q(A)  e'fA)*, (4-3) 

[r+m1(41 [r+m,(A)l-6281/92 = 0, (4.4) 

where m,(h) = A2Dl-iAUl+q91, (4.5a) 

the characteristic equation of the system (4.2) is found to be 

m,(h) = A2D,-iAU,+e/?,, (4.5b) 

and the two solutions of (4.4) are 

TI. ,(A) = - t (m,  +m,) ~t[(m,-7n,)2+~281821!. (4.6) 
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Thus the Fourier transforms satisfying the initial conditions (4 .2~)  are 
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&(A, T) = G ( h )  e'lQ) +&(A) erJA) T, ( 4 . 7 ~ )  

F,(h, T) = [rl(A) + ml(A)] y e r , ( ' )  + [r,(h) + ml(h)]  p (4 T, (4.7 b) 
eP1 

= h { l +  [(mt-ml) - 2 4 3  [(m2-mlI2 +4e2B1 P21-t>. (4.10b) 

If these inversion integrals in (4.9) and (4.10) can be evaluated then the contaminant 
concentrations will be completely known. 

It may be noted that the average contaminant concentration over the entire 
cross-section including both fast and flow zones is given by 

c(X,T) = ( ~ - - ~ ) C ~ ( X , T ) + ~ ~ C , ( X , T ) .  (4.11) 

5. Asymptotically valid inversion 
The Fourier inversion integrals in (4.9) are very complicated, as can be seen from 

the definition of rl(A),  rz(h),  P , ( A )  and P,(A) in (4.5), (4.6) and (4.8). As we are not 
aware of any method of evaluating these integrals exactly, we shall resort to an 
asymptotic method which is quite powerful. Specifically, we shall use the saddle-point 
method (see Copson 1965) to find asymptotic approximations of the integrals, valid 
for 'large T'. It will later be argued that the approximations are valid even when 
T is not very large. 

Consider the first integral in (4.9a), 

which is to be evaluated along the real axis in the complex h-plane, with 
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FIQURE 3. ,Jmplex A-plane showing branc-- points (El, , &, 
saddle points (Al, A*) and contours of integration. 

Re 
I 

and m,(h), m,(h) defined in (4.5). Now the integrand in (5.1) has branch points at 
the points where 

while the exponent Tr,(h) has saddle points at the points where dr,/dA = 0 (see 
figure 3). If the contour of integration (the real line) can be deformed to pass through 
the saddle points (path I1 in figure 3), then the major contributions to the integral will 
come from the neighbourhood of the saddle points (for ‘large T”), and the saddle-point 
method can be applied to find an asymptotic approximation of the integral. 

[m,(h)-m,(h)]2+4s2S,82 = 0 ,  (5.2) 

Similarly, the second integral in ( 4 . 9 ~ )  is 

and this integral has saddle points where dr,/dA = 0 and branch points where (5.2) 
is valid. 

However, in deforming a contour from the real line (path I in figure 3 )  to the path 
that passes through the saddle point (path 11), the integral round the branch cut 
(path 111) must be taken into account. 

In  the Appendix it is shown that the branch-cut contributions from L, and L, cancel 
each other, so that c1 can be obtained from the saddle-point contributions alone. 
Similarly the branch-cut contributions from the first and second integrals in (4.9b) 
cancel each other, and c, is also obtained from the saddle-point contributions alone. 
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6. Saddlepoint contributions 
In (5.1), for large T, the exponent rl T has saddle points that satisfy 

where ( )’ = d( )/a. Since s2/3, p2 is small (e2/?, /?, = O( lo- , ) )  this derivative can be 
written as a perturbation series in powers of e2plp2. Thus 

Therefore, to the zeroth-order approximation in E (i.e. when E = 0), the saddle point 
occurs where mi(A) = 0; that is, where 

A, x iU1/2D,. 
This saddle point will in general occur where 

i U, 
A, = - + E q l + E 2 q 2 + . * . ,  

201 

where q,, q2, ... can be found by substituting (6.3) in (6.2) and setting the powers of 
d equal to zero for j = 1,2,  . . . . If we limit the expansion to the O ( E )  term, we find 
that the saddle point occurs at 

( 6 . 4 ~ )  

In order to evaluate the integral L, by the saddle-point method, we need to know 

4 A l )  x -2D,(1-E28,B2P,), ( 6 . 5 ~ )  

, (6.5b) 

with A, = D2/D, ,  I‘, = U2/U, .  Also, by expanding (5.2) in powers of e2/?, p2, it is found 
that 

d2r,/dA2 at A = A,, and by differentiating (6.2) and using (5.8), we find that 

where 
@ 2 - p 1 )  (A1 - 1)  + ( q / 4 D , )  (3A:-6A1 I‘, + 1 - 2I‘, + q) 

(44) -ml(A1N3 
Pl = - 

~ l ( A 1 )  = - ml(Al) + e2P1 B2[m2(Al) - m,(A, )I-’  - (e2P1 [m,(A,) - ml(Al)l-3 + . . . . 
(6.6) 

Similarly, in the integral L, in (5.3), the saddle point for large T occurs where r&l) = 0, 
with 

(6.7) r2(4  = -i(m,+m,)-,[ (m2 - m1)2 + 4E2p, p2];. 
Thus it is found that this saddle point occurs at 

where 



Slow-zone model for dispersion in shear flows 25 

Also, at  this saddle point 

where 
r,"(A2) = -202[1 +E2/31P2P21, (6.9a) 

, (6.9a) 
(q/4D2) (3Ai -6A2  r2 + 1 -2r2 +c) + ~ ( / 3 ~ - / 3 ~ )  ( I  - A 2 )  

(m2&) - m,(A2))3 
P2 = - 

with A ,  = Dl/D2, r2 = U l / U 2 ,  and 

r 2 @ 2 )  = -m2(A2)--2/31/32Cm2(h2)-m,(h2)l-1+ (.281/32)2 [m2(A2)-m,(A)]-3+ .... 
(6.10) 

Thus the behaviour of the exponents in ( 4 . 9 ~ )  near the saddle points has been 
determined. These integrals in ( 4 . 9 ~ )  can be written as 

L , = L  I O3 P,(A) eTrJA)-IAX dA, n = 1,2. (6.11) 

Near the saddle points rk(A,) = 0, and we may write, using the Taylor series for r,(A) 
about A = A,, 

r,(A) = rn(An)++$(An)  (6.12) 

Thus (6.11) becomes, using only the first term in the Taylor series for P,(A) about 

27c -* 

A = A,, 

where 

Thus 

P,(A,) exp{Tr,(A,)-iA,X-~T[-r~(A,)]u~-iu, X dun, 

n = 1,2. 

L,+ 2x -m } 
u, = A-A,,  (6.13) 

The integral in (6.14) is a standard integral, and the result is 

This can be rearranged to give the first term in the asymptotic expansion of the 
integral as 

n = 1,2. (6.15) 

The first terms in the asymptotic expansions of the saddle-point contributions to the 
integrals involved in the inversion for cl(X,T) have now been obtained. These 
expansions (6.15) also apply to the integrals in (4.9b) forc,(X, T), provided that P,(A,) 
is replaced with &,(A,), n = 1,2. Higher-order terms in the asymptotic expansions 
can be obtained (see Carrier, Krook & Pearson 1966), but it will be shown that these 
first terms give quite accurate results. 
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It may be noted that the expansion of P,(A,) and &,(A,), n = 1,2, in powers of 
E using (4.8) and (4.10) gives, to O(e2) ,  

where 

with 

(6.18~) 

(6.18b) 

n1 = ml(hl) -m2(hl) = - (6 .19~)  

n2 = rn , (~, ) - rn , (~, )  = -(---- 2u1 Dl 1)-€(P2-8,). (6.19b) 
4D2 uz D2 

The ' large-T' asymptotic behaviour of the saddle-point contributions to the 
contaminant concentrations cl(X, T), c 2 ( X ,  T) can now be determined. Thus, putting 
(6.15) in ( 4 . 9 ~ )  and making useof (6.4), (6.5), (6.6), (6.8), (6.9) and (6.10) for A,, r,(A,) 
and rL(h,) (n = 1,2), it is found that for the fast zone, to O(e2), 

Cl(X, T) 
[X- Ul( 1 + E'Bu,) (1 - e2Bp1) TI2 

4TD1( 1 - e2Bp1) 
- <(Al) [4xD1 T( 1 - e2Bp1)]* exp { - 

[X- Uz(l -~'Bu,) (1 +e2Bp2) !PI2 
4TD2( 1 + E2Bp2) 

+ <(A2) [4xD2 T( 1 + e2Bp2)]-4 exp 

(6.20) 

This expression can be simplified, using (6.16) for P,(A,) and keeping only terms 
where B = /Il& 

of order e2, giving 

(6.21) 
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A similar asymptotically valid expression can be obtained for the saddle-point 
contribution to the slow-zone concentration by simply replacing & and P2 in (6.20) 
with &, and &,. Thus, if we define 

[X- V l ( l  +e2B(al -p l ) )  TI2 
q51(X, T )  = [47cDl T( 1 - e2Bp1)]+ exp - { 4TD1( 1 - s2Bpl) 

q5,(X, T )  = [47~D, T( 1 + s2Bp,)]f  exp - [ X -  U2(1--2B(a2-P2)) TI2 I 4TD,( 1 + e2&,) 

then, in the slow zone, 

CdX, T) - co €/32 ~1 T )  + co (1 - $2 ~ 2 )  $AX, TI- (6.23) 

Finally, the saddle-point contribution to the average contaminant concentration 
over the entire cross-section, c(X,T), is found by using (6.21) and (6.23) in (4.10). 
The result is 

C(X, T) co[(1-72) ~ ~ - ~ B ~ ~ ~ ~ + 7 2 ~ / 3 , ~ 1 1 q 5 1 ~ ~ , ~ ~  

+co[( l -~z)~ /3 ib ,+1lr( l -~ /3zwz) l~a(X,  TI. (6.24) 

While these expressions for cl(X, T), c,(X, T) and c(X, T) are in principle valid for 
‘large T ’, experience with asymptotically valid expressions shows that they will be 
valid even when T is not very large (see Carrier et al. 1966, p. 242). This will be 
especially true in this case where c: is small and the expressions are exactly valid for 
all time when e = 0. Thus we anticipate that these expressions will be useful even 
when T is as small as 2 or 3. In principle, the higher-order terms in the asymptotic 
expression can be obtained, but these first terms are sufficient to show the main 
results. 

Since s2 is very small, (6.21)-(6.24) for cl, c2 and c can be written approximately 
as 

[ (x- ‘2 p)2-,$2 T I ,  
4 0 ,  T 

c2(X, T )  - (47tD, T)-f  exp - 

(6.25 a )  

(6.253) 

7. Comparison with experimental data 
7.1. Decay rate of peak concentration 

In the first stage of his three-stage description (i.e. for 0.6 < T < 4 )  Sullivan (1971) 
observed from his experiments that the depth-averaged concentration c consisted of 
a Gaussian distribution followed by a long tail. The peak value of the Gaussian was 
observed to decay at .the rate 

which is faster than the T-4 decay rate predicted by the Taylor model. 

exp (-0.3T), (7.1) 

2 FLM 152 
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From (6.22) and (6.24) our theory predicts that the peak value of the bulk 
concentration (which at small times is the same as the peak value of the leading 
Gaussian) will decay approximately at  the rate 

T-i exp ( -e@, T ) .  (7.2) 

Using the inverse fractional depth /3, = 1.582 from (11.11) and E = 0.137 from 
(3.14), i t  is found that EB, = 0.22. Also, in the range 1.5 < T < 6 the approximation 
T-! x exp ( -0.175") is valid. Thus the overall decay rate of the peak concentration 
as predicted by our theory is 

T-l exp ( -$, T) x exp (-0.17T) exp (-0.22T) 

This is close to but slightly higher than the rate observed experimentally by Sullivan 
(1971) and given in (7.1) above. 

= exp (-0.39T). (7.3) 

7.2. Comparison with concentration data 
For the comparison of the predictions of our theory with the experimentally measured 
variation of the depth-averaged concentration c with X a t  a fixed time, we shall use 
the experiments of Sullivan (1971). Specifically, the last row of data in his table 2 
had R, = U* h/v  = 790 (where v is the kinematic viscosity of the fluid), 

h = 7.32 cm, u* = 1.21 cm/s, u = 22.9 cm/s, U = 18.926 and E = 0.133 

(and therefore K = 3e = 0.4). For the optimal choice of fractional depths given in 
(1 l . ll),  (3.4a,b) give an average fast-zone velocity U, = 20.38 and slow-zone velocity 
U, = 16.43. Similarly, the values D, = 0.26 and D,  = 2.08 are obtained from ( 3 . 8 ~ ) .  
The calculated value of U,/ U is 1.08, compared with the experimental value of 1.125. 

For this case then, the fast-zone, slow-zone and average contaminant concentrations 
(c , ,  c,,  c )  predicted by the theory (6.21)-(6.24)) are plotted in figures 4(a)  (for T = 1.0) 
and 4(b) (for T = 2). The curves for c are quite similar to the experimental 
observations of Sullivan (1971) in the first stage of the dispersion process. 

While our theory could be compared with the excellent experimental data of 
Fischer (1966), such comparisons would not be meaningful, since most of Fischer's 
data were obtained in the second stage of the dispersion process, while the theory 
presented so far is useful only for the first stage. 

There are five main facts that can be observed from (6.21)-(6.24) and figure 4. These 
five findings are important analytical results of this paper, and distinguish our results 
from most previous work on dispersion in open channels and streams. They are the 

(i) For small and moderate times from release of contaminant, the contaminant 
distribution in the fast zone consists of a forward Gaussian cloud whose peak value 
is 0(1) and which travels at speed x U,,  followed by a small Gaussian cloud whose 
peak value is O(E) and which travels at speed x U,. In  the slow zone the main cloud 
is the slow one whose peak value is 0(1) and which travels at speed x U,, preceded 
by a small Gaussian cloud whose peak value is O(E)  and which travels at speed x U,. 

(ii) The depth-averaged contaminant concentration c (X ,  T) consists of a leading 
Gaussian distribution mostly (but not completely) in the fast zone and a trailing 
Gaussian distribution mostly (but not completely) in the slow zone. Because D, > D,  
the trailing Gaussian distribution will disperse longitudinally faster than the leading 
one, and will thus form the long tail that is characteristic of the early stage of all 
dispersion observations in open channels. 

following. 
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20 25 30 40 45 

FIGURE 4. Theoretically predicted fast-zone (- - - - - - -), slow-zone ( - - -a) and average (-) 
contaminant concentrations given by equations (6.21)-(6.24) plotted against X at (a) T = 1 and 
(a) T = 2, with U, = 20.38, U, = 16.43, U = 18.93, D, = 0.26, D, = 2.08, 7% = 0.3679, vI = 0.6321 
and E = 0.133. 
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(iii) In both the fast and slow zones the peak value of the leading Gaussian cloud 
decays exponentially like Ti exp ( -eBl T), while the peak value of the trailing 
Gaussian cloud decays exponentially like fi exp ( -eBZ T). With the slow zone 
thinner than the fast zone (8, > B,), the trailing Gaussian cloud therefore decays 
faster than the leading one. Thus for reasonably small times the peak value of the 
average concentration c( X, T) decays exponentially with time ; this exponential decay 
was observed by Sullivan (1971) in his experiments, and we have shown that the 
T - 1  exp ( - e/3, T) rate of decay obtained from our analysis is close to the rate observed 
by Sullivan. 

(iv) The theoretically calculated value of the non-dimensional diffisivity of the 
leading Gaussian distribution, D, = 0 . 0 1 6 / ~ ~  ( x  0.24), is consistent with the range 
of values of 0.1 < D, < 0.3, which were found experimentally by Sullivan in the first 
stage of the dispersion process. 

(v) The theoretically calculated value of the non-dimensional lateral diffusivity 
between the fast and slow zones, e = ;K ( x 0.137) is in agreement with the value of 
0.12 found experimentally by Sullivan (1971) for the average lateral diffusivity. 

However, there is a difficulty with these asymptotic solutions obtained using the 
saddle-point method ((6.21)-(6.24)). Because of the exponential decay of the peak 
values of both the leading and trailing Gaussian distributions, i t  is clear that 
j-”, c ( X ,  T) dX will decay exponentially with time, and thus violates the conservation 
of contaminant mass. While the approximation has been shown to be useful for small 
times, i t  cannot be correct at large times. 

In order to resolve this question, we shall in the next few sections obtain and 
analyse an exact solution of the slow-zone model for the case D, = D,. It will be shown 
that the exponential decay of the peak value of the contaminant distribution applies 
only at fairly small times. A t  large times this exact solution approaches a single 
Gaussian distribution which travels at the bulk speed Uin accordance with the Taylor 
model. 

2-2 
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8. Reformulation of the Fourier integrals 

in a more compact form in terms of two Fourier-inversion integrals. Thus let 
The Fourier-transform solutions given in (4.9) and (4.10) for c1 and c, can be written 

A(A) = [(m2 -m1)2 + 46'8, /32]: 

= {[h2(D2 -0,) + i 4  ul - u2) + e(P2 -P1)12 + 4e28, P2P, ( 8 . 1 ~ )  

(8.1 b )  

( 8 . 1 ~ )  

l W  
q+(X,  T )  = - s A-l(A) exp[-ihX--:T(m,+m,-A)]dA, 

q-(X, T )  = - ' J A - ~ ( A )  e x p [ - i i ~ ~ - - : ~ ( m , + m , + ~ ) ] d ~ ,  

2A --Q) 

2x -a, 

m1 + m2 = A2(Dl +D2)  - ih( Ul + U2)  + e(P1 +A). 

W 

with 

It is then pleasantly surprising that cl and c2 can be written simply in terms of the 
derivatives of q+ and q-; thus 

cl(x, = CO[aT-D2a$+ U2aX+6(p1+82)1 (q+-!?-)? ( 8 . 3 ~ )  

c 2 ( x ,  = Co[aT-Dia%+ ul&+s(8i+82)1 (q+-q-), (8 .3b)  

( 8 . 3 ~ )  

(8.2) 

c(x ,  = Co[aT-(r]iD2+r]2Di)ag+(r]i u2+r]2  U i ) a X + s ( ~ 1 + 8 2 ) 1  (q+-q-)- 

It may also be noted from (8.1) that 
W 

q ( X , T )  = q+-q- =is A - I ( A )  exp[-ihX-+T(ml+m2)] sinh[+A(h)TJdh. 
A -w 

(8.4) 

The telegraph equation 
The aim of this subsection is to point out the similarities and differences between our 
two-layer model and the two-layer model given by Smith's (1982) telegraph equation. 
The coupled dispersion equations (2.7) can be combined into a single fourth-order 
partial differential equation for the bulk concentration as follows : 

az, C +  D,  D, ag C- (ol +D,)  a:,, c- (ul D, + u2 0,) as c 

+ [Ul u2-€(fl1 D2 4-p~ D1)] c + (u1 + u2) a$T c+Ep1 8 2  aT  c+c6, 8 2  uax C = 0, 

(8.5) 
where we have used the facts that 

81+82 = 81821 ( 8 . 6 ~ )  

(8.6b) 

On the other hand Smith's (1982) telegraph equation for the two-layer model is 

(8.7) 

81 u2 + 8 2  Ul = A82 u. 

(using dimensionless variables), 

(a, + voax +pu) (a, + ua, -zag) c - p ~ , ( ~ )  ag, c = 0. 

az, c - i q X X  c- wo K as + [vo U - ~ ( K +  D[(OO ))I ag 
This equation can be written as a third-order partial differential equation 

+(vo+ u)ag,+PaTc+pua,c = 0. (8.8) 
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The two equations agree when D, = D, = i? = 0, provided that 

(8.9a, b)  

vo = 1 2  u1+11 u29 ( 8 . 9 ~ )  

vo-u= -(ul-u2)-# I32 - A 
B1 B 2  

However, when D, =+ 0, D, 9 0, i? 9 0, the two equations are not the same, since 
our (8.5) is fourth-order and Smith’s (8.8) is third-order. 

9. Exact solution when D, = D,. 
An exact solution of the slow-zone model of dispersion can be found in the form 

of a convolution integral in the special case when D, = D, (Thacker 1976). In this 
section this exact solution will be obtained, and then its behaviour will be explored 
for small times and large times from the release of the contaminant. 

Let D, = D, = Do, then the expression (8.1 a) for A(A) becomes much simpler and 
can be written as 

A(& = [-A2(U,- U2)2+2ieA(Ul- U2) ( ~ 2 - ~ 1 ) + f ( ~ 2 + + 1 ) * l f  
= ( U, - U,) [(iA + d) (iA + b)?, (9.1 a)  

where (9.1 b)  

(9.lc) 

and we have used the fact that B1+/3, = fllp2. Equation (8.4) for q can in this case 
be written as 

x exp ( - iAB-A2Do T) sinh {i[(iA + d) (iA + b)]: T( U,  - U,)} dA, (9.2) 

where G = X-$T( U,  + U,). (9.3) 
q(X, T) is the Fourier inverse of the product of two Fourier transforms, and so can 
be written as a convolution. Thus, from Campbell & Forster (1961, p. 113), 

m 
L 1 [(ih + d) (iA + b)]+ exp ( - iAB) sinh {i[(iA + d )  (iA + b)]: T( U, - U,)} dh 
2x 

= i exp [#(a + b) q Jo {t[$TZ( U,  - U,)* -P]t (d - b) }  

G <  IiT(U,-U,)I, (9.4) 
where Jo and I ,  are respectively the Bessel function and the modified Bessel function 
of the first kind, of zero order, and we have used the fact that Jo( -iR) = lo@). Also, 
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Equation (9.2) for q ( X ,  T) can therefore be written as the following convolution 
integral : 

where 

(9.6b) 

(9 .6~)  

g(T) = Y( u1- U2). (9.6d) 

Equations (9.6) can then be used in (8.3) to calculate the contaminant concentrations 
c,, c, and c as functions of X and T. The exact solution of the slow-zone model for 
the case D, = D, = Do has thus been obtained. The result is 

( 9 . 7 ~ )  

where G, = X- U,  T, (9.7b) 

(9.7c) G, = X- U, T, 

and in the second line of (9.7a) c1 has the positive sign while c, has the negative 
sign. Finally, c is obtained from the equation c = T,I~ c1 + 7, c,. These solutions reduce 
to the solution given by Smith (1982) in the non-diffusive case D, = D, = 0. 

Although the convolution integrals can be evaluated numerically, we shall instead 
seek to find asymptotically valid explicit expressions for the contaminant concentra- 
tions for small T and for large T. 

10. Exact solution valid for small T 
The maximum value of the argument of the modified Bessel function I,(R) in (9.7a) 

occurs when E = 0, and is R = eT(P,/3,):. Thus when T is small the argument will be 
small and the ascending series for the modified Bessel function can be used, that is 
(Abramowitz & Stegun 1965), 

Io(R) = 1 ++R2+(iR2)2/(2!)2+..., (10.la) 

(10.1 b)  

In order to obtain a first approximation for the contaminant concentrations, the first 
terms in (10.1) can be used, i.e. Io(R) x 1, thus neglecting terms that are O(s2T2). In 
this case the integrals in ( 9 . 7 ~ )  can be evaluated in terms of error functions. The last 
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integral in ( 9 . 7 ~ ~ )  can be neglected since it is O(E,T), and the first and second integrals 
can be rewritten using the change of variable (from fl  to g) 

5(4D0T$ = S-[G+ 
u1- u2 

(10.2) 

The resulting expressions for the contaminant concentration in the fast zone is (for 
small T )  

c1 x c0(47rD0 T)-l exp ( 4 0 ,  -- T ' P I  T>-@o'P1 M y  ( 1 0 . 3 ~ )  
- G; 

where 

x { e r f [ x ] - e r f [  (10.3b) 
( 4 0 ,  T): ( 4 0 ,  T): 

and ( 1 0 . 3 ~ )  

with erf as the error function. Similarly, the contaminant concentration in the slow 
zone is (for small T )  

c2 x c0(47rD0 T)-; exp " q9, .> - +co P, M ,  (10.4) ( 4DoT 

while the depth-averaged contaminant concentration is (for small T )  

These expressions for the contaminant concentrations will be useful so long as 
+."PIP, T2 is small (O(B)) .  For /3, x P2 x 2, this will be valid for 0 < T 4 3.0, or 
approximately for the first stage of the dispersion process (Sullivan 1971). 

The significance of (10.3)-( 10.5) is that we have confirmed from an exact solution 
that the asymptotic results obtained using the saddle-point method ($6) are 
approximately correct for the first stage of the dispersion process. There are 
differences, but these differences are small (O(E))  and may arise because of different 
ways of writing an asymptotic series. Most significantly the exponential rate of decay 
has been confirmed from an exact solution, and the average contaminant concentration 
consists primarily of a leading Gaussian and a trailing Gaussian. 

The condition D, = D, under which the exact solution was obtained is not a good 
model of the physical situation in which D, > D,. Therefore these exact results will 
not be compared with experimental concentration-time data. 

11. Exact solution valid for large T 
When T is large it is convenient to use the longitudinal variable Z = X- UT, which 

moves with the bulk velocity. In  (9.6) and (9.7) we also make the change of variable 
(from fl to P ) ,  

( 1 1 . 1 )  
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and use the fact that 

(11.2) 

Equation ( 9 . 6 ~ )  for q can then be written as 

q(2 ,  T )  = ( U, - U2)-l (4nD0 T)-! exp ( -2eT) 

where (11.3b) 

The dominant part of the Bessel function in (11.3a) comes from near 
R = eT(/3, B,):. Thus for large T ,  R is large and we can use the asymptotic expression 
for the modified Bessel function for large arguments: 

Io(R) - (2nR)-! exp R. 

Using (1 1.3 b), Io(R) can be written as 

P(B2 - B 1 )  - I .  - (4xeT)-! exp 2eT- [ U,-U2 

(11.4) 

(11.5) 

Equation (1 1.5) can now be used in (1 1.3a), and the asymptotic result for q is 

where (11.7) 

is the contribution to the longitudinal dispersion coefficient a t  large times due purely 
to the lateral mixing. Since the convolution of two Gaussian distributions is another 
Gaussian distribution, the asymptotic result is 

(1 1.8a) 

where D(0O) = D,(OO)+Do (1  1.8b) 

is the overall longitudinal dispersion coefficient at large times (for this case in which 
D, = D, = Do). Finally, when (11.8) is used in (8.3), it  is found that the fast-zone, 
slow-zone and average contaminant concentrations all approach the same asymptotic 
limit, which is 

co exp [ - (x- 
4D(oo)T 

(4nD(00) T)! ' 
C(X, T) (11.9) 

Two significant results have thus been obtained from the behaviour of the exact 
solution at large times : 

(i) the contaminant distribution asymptotically approaches a Gaussian distribution 
travelling with the bulk speed U at large times, as predicted by the Taylor model; 

(ii) the overall longitudinal-dispersion coefficient at large times consists of the 
diffusivity Do plus a contribution Dt( 00)  which depends entirely on the lateral mixing. 
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0 0.2 0.4 0.6 0.8 1 .o 
0 2  

FIQD~E 5. Theoretically predicted dispersion coefficient at large times (d D l ( , a ) )  due to lateral 
mixing, plotted aa a function of the slow-zone fractional depth qa. 

2’he magnitude of D( 00) and the optimal choice of zonal fractional depths 
Equation (11.7) for D,(ao) can be simplified if we use (3.4a,b) for U, and U,  and 
equation (3.14) for 6. The result is 

( 1 1.10) 

In figure 5, ~ ~ D , ( o o )  is plotted as a function of q2. The maximum value of D,(oo) can 
be found at the point where dD,(oo)/dq, = 0. This calculation shows that the 
maximum occurs when 

DAm) = 3(qa 

qz = e-l = 0.3679; q, = 1 -e-l = 0.6321, (11.11) 

These are therefore the optimal choices of the fractional depths, and the resulting 
maximum value of D,( 00 ) is 

This is almost the same as the longitudinal dispersion coefficient calculated by Elder 
(1959) ( D  = 0.4041/~~)  and based on the lateral diffusivity ey. It may be noted that 
the optimal choices of fractional depths given in (1 1.1 1) are close to but different from 
the values given by Smith (1982), i.e. qa = 0.3276, 7, = 0.6724. 

Using (11.12) in (11.8b), i t  is found that the overall longitudinal dispersion 
coefficient at large times is given by 

D( 00) = 0.406/* + Do. (11.13) 

This result haa been obtained for the case D, = D, = Do. We may, however, 
approximate the average diffusivity across the channel in the more general case 
(D,  + D,) by using 

Dc(00) = 0.4060/~’. (11.12) 

Do = r,D,+rlrD, 

= 0 .048 /~~ ,  (11.14) 

where we have used the values of D, and D, calculated in ( 3 . 8 ~ )  and the optimal 
fractional depths from (11.11). The final result is 

D ( w )  = 0 . 4 5 4 / ~ ~ .  (11.15) 
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If K = 0.41 then D(co) = 6.6. This value of D ( m )  is higher than Elder’s (1959), and 
is exactly the value suggested by Chatwin (1971, p. 696) for Sullivan’s second stage 
on the basis of an analysis of Fischer’s (1966) experimental data. 

Finally, i t  is important to determine the values of T for which these large-time 
asymptotic results are valid. The asymptotic expression given in (11.4) for the 
modified Bessel function I,(R) is good to within 5 %  error when R > 3. Since the 
dominant part of I J R )  comes from near R = sT(/3, P,)f, this implies that the large-time 
asymptotic results obtained in this section are good when 

3 9  T>-=--, 
2 E  2K 

that is T >  11, for K = 0.41. 

(At R = 1 (T x 4) the asymptotic expression for I ,@)  is in error by about 20 %.) 
Since we have neglected the viscosity-dominated layer, this estimate of T is the time 
required for the contaminant to sample fully the flow variation outside the viscous 
layer. Thus our asymptotic results are useful for Sullivan’s second stage. This is 
consistent with the results of Dewey t Sullivan (1977), who showed that in turbulent 
flow in a smooth pipe the Gaussian distribution for c is approached when T > 300. 
This would be the time required for the contaminant to sample the entire flow, 
including the viscous layer, and thus giving Sullivan’s third stage. 

12. Conclusion 
The principal analytical results of this paper have been stated in $87 and 11. 

Significant results which are consistent with experimental data have been obtained 
for the first and second stages of the dispersion process. The viscous layer has been 
neglected, but it should be possible to include this layer in future work using a 
three-zonal model. The exact solution that we analysed is valid only when D, = D,, 
whereas $3 shows that D, > D,. The effects of this zonal difference in diffusivity on 
the exact solution will be explored in subsequent work. In  addition, the slow zone 
can be formulated to include the regions of slow flow along the sides of the channel. 
The inclusion of these slow regions may help to explain why Fischer (1966) found 
that the longitudinal-dispersion coefficient is significantly increased when the sides 
of the channel are rough (thus leading to a thicker slow zone). It is also clear that 
the slow-zone model can be applied to pipe flow (both turbulent and laminar) and 
to plane Poiseuille flow. These applications will be presented elsewhere. 

Finally, i t  is pertinent to point out that in this paper the boundary between the 
fast and slow zones is not associated with any drastic change in the properties of the 
flow. Rather, the slow-zone model is meant to present a simple (first) approximation 
of the phenomenon of longitudinal dispersion resulting from (i) velocity differences 
over the cross-section, and (ii) transverse exchange. The two zones with two different 
velocities 17, and U, can be regarded as the simplest possible discretization of the full 
velocity profile. As Thacker (1976) has noted, better approximations (especially at 
small times) can be obtained if three or more zones are used. It is, however, 
remarkable that so much useful information can be obtained from the simple two-zone 
model. 

A t  the time this paper was first submitted for publication the authors were not 
aware of the work of Thacker (1976) and Smith (1981,1982) on two-zone models. The 
first author wishes to thank the referees for pointing out these references and for all 
their useful comments, all of which helped the thought process that sharpened this 
paper into a self-consistent piece of work. 
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Appendix 
We wish to show here that the values of the Fourier-inversion integrals (4.9a,b) 

remain unchanged when the contour of integration is changed from the real line to 
contours that pass through the saddle points. These saddle points A1 and A, are given 
by (6.4a) and (6.8a) and lie on the positive imaginary axis as shown in figure 3. From 
(4.8) let 

where f (4  = m,(4--1(A)+24, (A 3) 

gl(A) = ( m l - m , ) 2 + 4 s 2 ~ l ~ ,  = [A2(D1-D2)-iA(Ul- U,)+e(Bl-~2)]2+4s2&3,. (A 4) 

Equation ( 4 . 9 ~ )  can then be written in the form 

cosh&i+-rsinhfg' exp[-iAX-f(m,+m,)T dA. (A6)  
91 ' 1 1  1 

In this integral the branch points occur at the zeros of g,(A), i.e. 

m(A) = & 2is (B, B2)4, (A 7) 

with m(A) = A2(Dl-D,)-iA(Ul- U , ) + ~ ( / 3 ~ - / 3 , ) .  (A 8) 

Thus the branch points occur at the four points 

For small + these branch points can be written in pairs as 

We can take one branch cut joining 5, and 6, and another branch cut joining 6, 
and t4, as shown in figure 3. Both 6, and 5, lie well down in the lower half-plane. Thus 
when the contour of integration is deformed from I (the real line) to I1 (passing 
through a saddle point), the branch cut from E3 to f is not affected and does not 
contribute to the integral. Similarly, for B1 < B, both 6, and 5, lie in the lower 
half-plane, and the branch cut joining them does not contribute to the integral. 

> P,, El and 6, both lie near the origin in the upper 
half-plane, and so the integral round them (contour 111 in fig. 3) must be considered 
when we deform the path from I t o  11. This integral round the branch cut can be 

On the other hand, for 
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divided into two circular parts (111, and 111, in figure 3) and two straight parts (111, 
and 111,). 

The integrals round the circular paths 111, and 111, can easily be shown to vanish 
as the radii of the circles tend to zero. The integral on 111, is a line integral from 6 

1 to  6,. On this line gi will be positive. On the other hand, on 111, (the lower side) g1 
will be negative. Thus coshh! + (f/d) sinh$! does not change sign when we move 
from 111, to 111,. Therefore the integrals on 111, and 111, will cancel, since one is the 
line integral from 6, to 6, and the other is the line integral from 6, to 5, of the same 
integrand. 

We have thus shown that the Fourier-inversion integral for c l ( X , T )  round the 
contour I11 vanishes, and so we can deform the path of integration from the real line 
I to the contour I1 which passes through the saddle point. From (4.9b) the 
Fourier-inversion integral for c,( X, T) can be similarly deformed. 
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